Geometrical Inversion of Methoxymethyl Cations

By DAN FARCASIU^{*} and JOHN J. O'DONNELL

(Corporate Research Laboratories, Exxon Research and Engineering Company, P.O. Box **45,** *Linden, N. J.* **07036)**

and **KENNETH** B. **WIBERG*** and **MICHAEL MATTURRO**

(Department of Chemistry, Yale University, New Haven, CT **06520)**

Summary The barrier for geometrical isomerization of the title ion $[\Delta H^{\dagger} = 11.9 \text{ kcal mol}^{-1}, \Delta S^{\dagger} = -4 \text{ cal mol}^{-1}$ K^{-1} (1 cal = 4.184 J), variable temperature n.m.r. spectrum **270** MHz] agrees with *ab initio* **(4-31G)** calculations for an inversion process $(\Delta E_{\text{calc}} = 12.0 \text{ kcal mol}^{-1})$; the values computed for a rotation around the C+-0 bond **(20.8** kcal mol-l) or at the **STO-3G** level **(25.2** and 32.8 kcal mol⁻¹, respectively) are too high.

STABILIZATION by the x-oxygen makes the methoxymethyl cation **(1)** observable in superacid solution.¹ Its salts have even been isolated as solids^{2a} and used as initiators for cationic polymerizations.^{2b} *Ab initio* M.O. calculations³ predict that the planar form **(la)** of this primary carbocation is more stable than the secondary isopropyl cation. At the same time, the calculations predict that **(la)** should undergo geometrical isomerization by inversion **(1 b)** rather than by rotation around the $C⁺-O$ bond. In fact, the perpendicular form **(lc)** relaxes to the linear form **(lb)** upon optimization of the C-0-C angle.3 (The relative energies are given under the formulae.)

While the results obtained at the **STO-3G** and **4-31G** levels* are in qualitative agreement, the values for the relative energies at the two levels are significantly different.

Fortunately, these calculations are amenable to experimental verification as the **4-31G** value implies that the inversion of **(1)** be observable below room temperature, while the **STO-3G** result requires **(la)** to be geometrically stable at significantly higher temperatures.

Cation **(1)** is conveniently prepared from methoxyacetyl chloride $(2)^{1,3}$ and SbF₅, in SO₂FCI at -75 °C. A complex is formed which can be formulated as **(3)** or more probably **(4),**** based on its lH n.m.r. spectrum, indicated on the formulae. (The structure of an acyl cation proposed for this species' is contradicted by the **13C'** n.m.r. spectra.!) Decarbonylation occurs between - **30** and - **10** "C, forming **(1).**

SCHEME. Reaction conditions, i SbF₅-SO₂FCl, -75 °C, ii -CO₂ $\text{heat.} \quad \text{X} = \text{Cl} \text{ or } \text{F}.$

In the ¹H n.m.r. spectrum of (1) at 60 MHz and -60 °C, the two hydrogens at C-1 have the same chemical shift.'& At **100** MHz, previous authors could analyse the CH, signal as an **AB** pattern by computer simulation of the peak.lb In our hands, the broad CH₂ signal $(W_1 \ 7.4 \ Hz \ at \ -65 \degree C)$ was not satisfactorily resolved for a variable temperature study at **100MHz,** although it narrowed on warming.

-f The relative energy given for **(lc)** was calculated with the C-0-C angle held at the value found optimum for **(la) (128.5');** $1 cal = 4.184$ J. n and the values for the was not satisfactorily resolved for a variable temperature
lative energies at the two levels are significantly different. Study at 100 MHz, although it narrowed on warming.

† The relative energy g

but the structure seems highly strained.

1 The chemical shift of the CO signal moves **38** p.p.m. downfield upon reaction with **SbF,,3 as** expected for **(3)** or (4).5 In the formation of **an** acyl cation from the acid chloride this peak should move upfield.5

FIGURE. Recorded (left) and simulated (right) ¹H-n.m.r. signals for the methylene group of **(l),** in the temperature range **of** measurable exchange rates. (The arrows mark the signal of an impurity, probably H_aO+). $\frac{1}{2}$. $\$

The peak $(\delta 9.61)$ was eventually resolved at 270 MHz; § a clean AB pattern $(\Delta \delta 34.5 \text{ Hz}, I 20.7 \text{ Hz})$ was obtained at -64.4 °C. This was temperature dependent, becoming a singlet at $+1.0$ °C (Figure), while cooling to -74.6 °C did not alter the spectrum. The lines were somewhat broadened by allylic couplingla with the Me protons (8 **5-56),** but no further splitting was observed at all temperatures. The rates **of** exchange were determined at six temperatures¶ by line shape analysis.⁶ From these rates the activation parameters: $\Delta H^{\ddagger} = 11.9 \pm 1.2$ kcal mol⁻¹, $\Delta S^{\dagger} = -4 \pm 3$ kcal mol⁻¹ K⁻¹ were calculated. The uncertainties quoted represent the uppermost limits based on the experimental errors, not statistically derived quantities.

In conclusion, our experiments substantiate the inversion barrier calculated at the **4-31G** level; the **STO-3G** value is too high. The experiments thus lend weight to the prediction that the preferred pathway for geometrical isomerization of **(la)** is the inversion at oxygen,' rather than rotation around the C+-0 bond as considered previously.*

*⁵*The instruments used were: Varian **A60 (60** MHz), Varian **XL-100 (100** MHz), and Brucker **HX-270 (270** MHz). Me,Si in $\tilde{\text{CD}_2\text{Cl}_2}$ (external) provided the reference and lock signal, respectively.

 $\frac{1}{2}$ (1.45.9 °C (2.5 ± 0.25), -35.2 (7 ± 0.7), -25.9 (28 ± 2), -17.1 (52 ± 2), -7.8 (12.3 ± 3), and +1 (260 ± 26). To decrease
the vapour pressure, ca. 15% FSO₃H by volume was added to the sample for the +1 °C meas was 32.8 Hz. ^{This} variation was taken into account in the line-shape analysis.

¹(a) G. **A.** Olah and J. **M.** Bollinger, *J. Amer. Chem. SOL,* **1967, 89, 2993; (b) A.** M. White and G. **A.** Olah, *ibid.,* **1969, 91, 2943.** ² (a) V. Jaacks, H. Frank, E. Grünberger, and W. Kern, *Makromol. Chem.*, 1968, 115, 290; G. A. Olah and J. J. Svoboda, Synthesis, 1973, 52; B. A. Komarov, B. A. Rozenberg, and N. S. Erikolopyan, *Izvest. Akad. Nauk S.S.* Gechele, and L. Mariani, *J. Polymer Sci., Part* **A-1, 1967,** *5,* **891;** B. **A.** Komarov, **A.** T. Ponomarenko, V. P. Volkov, B. **A.** Rozenberg, and N. S. Erikolopyan, *Vysokomol. Soedinenina, Ser. A,* **1974, 16, 2464,** and previous papers.

D. Fărcasiu and J. A. Horsley, to be published.

*The calculations were performed with the Gaussian **70** series **of** programs: W. J. Hehre, W. **A.** Lathan, R. Ditchfield, M. D. Newton, and J. **A.** Pople, Program No. **236,** Q.C.P.E., Indiana University, Bloomington, Indiana.

5G. **A.** Olah, **A.** Germain, and **H. C.** Lin, **J.** *Amer. Chem. SOC.,* **1975, 97, 5481.**

⁶The calculations of the line shapes for the AB system were carried out using a program kindly supplied by Professor Martin Saunders.

⁷Similar predictions were made by recent calculations on protonated formaldehyde **(F.** Bernardi, I. G. Csizmadia, **H.** B. Schlegel, and S. Wolfe, *Canad. J. Chem.,* **1975,** *53,* **1144),** while previous calculations had predicted the contrary (P. Ros, *J. Chem. Phys.,* **1968, 49, 4902).** The intervention of proton exchange with the acid prevented the experimental verification of these predictions for **CH,OH+.**

8 **W.** P. Meyer and J. **C.** Martin, **J. Amer.** *Chem.* **SOC., 1976, 98, 1231.**